login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281684
Least composite k such that the concatenation of n consecutive composites, starting from k, is a prime.
2
8, 138, 87, 88, 14, 122, 121, 70, 21, 206, 405, 94, 15, 82, 195, 27, 729, 266, 358, 136, 318, 592, 18, 342, 202, 1182, 268, 155, 85, 292, 386, 888, 295, 551, 892, 118, 63, 95, 696, 1497, 315, 400, 954, 574, 33, 72, 85, 1377, 140, 1417, 158, 448, 994, 1370, 3399
OFFSET
2,1
COMMENTS
If k = 1 is allowed then a(27) = 1 and a(50) = 1.
From Michel Marcus, Mar 06 2021: (Start)
Some small values:
a(2) = 8 = A002808(3);
a(646) = 10 = A002808(5);
a(14662) = 12 = A002808(6) [Hans Havermann];
a(6) = 14 = A002808(7);
a(14) = 15 = A002808(8);
a(302) = 16 = A002808(9);
a(24) = 18 = A002808(10);
a(1388) = 20 = A002808(11) [seqfan user cwwuieee]. (End)
Records: 8, 138, 206, 405, 729, 1182, 1497, 3399, 3588, 8097, 11064, 11076, 12806, 28089, 35084, 37912, 39897, 45330, 50828, 76589, ..., . - Robert G. Wilson v, Mar 12 2021
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (terms 2..250 from Paolo P. Lava, terms 201..500 from Michel Marcus).
Seqfan thread, Reversing A281684, March 2021.
EXAMPLE
a(2) = 8 because the next composite after 8 is 9: concat(8, 9) = 89 is prime and 8 is the least number with this property;
a(3) = 138 because the next composites after 138 are 140, 141: concat(138, 140, 141) = 138140141 is prime and 138 is the least number with this property.
MAPLE
with(numtheory): P:=proc(q) local a, b, i, j, k, n; for n from 2 to q do
for k from 1 to q do if not isprime(k) then a:=k; b:=a; j:=1; while j<n do j:=j+1; i:=1;
while isprime(b+i) do i:=i+1; od; a:=a*10^(ilog10(b+i)+1)+b+i; b:=b+i; od;
if isprime(a) then print(k); break; fi; fi; od; od; end: P(10^9);
MATHEMATICA
With[{c = Select[Range[10^5], CompositeQ]}, Table[k = 1; While[! PrimeQ@ FromDigits@ Flatten@ IntegerDigits@ Take[c, {k, k + n}], k++]; c[[k]], {n, 55}]] (* Michael De Vlieger, Jan 27 2017 *)
NextComposite[n_Integer /; n > -1] := If[-1 < n < 3, 4, If[ PrimeQ[n + 1], n + 2, n + 1]]; a[n_] := Block[{k = 4}, While[ !PrimeQ[ FromDigits[ Flatten[ IntegerDigits[ NestList[ NextComposite, k, n - 1]]]]], k = NextComposite@ k]; k]; Array[a, 55, 2] (* Robert G. Wilson v, Mar 12 2021 *)
PROG
(PARI) nextc(c, n) = {my(vc = vector(n), j = 2, x = c+1); vc[1] = c; while (j <= n, if (!isprime(x), vc[j] = x; j++); x++; ); vc; }
isok(vc) = {my(x=""); for (i=1, #vc, x = concat(x, Str(vc[i]))); ispseudoprime(eval(x)); }
a(n) = {forcomposite(c=4, oo, my(vc = nextc(c, n)); if (isok(vc), return(c)); ); } \\ Michel Marcus, Mar 03 2021
(PARI) {inv_A281684(n, L=oo, k=1)=forcomposite(c=1+n=A002808(n), L, k++; ispseudoprime(n=n*10^(logint(c, 10)+1)+c)&&return(k))} \\ "reversed function" (cf. comments): Find the least k such that the concatenation of k composites, starting with the n-th composite, yield a prime. 2nd optional arg allows to specify a search limit L, then an empty/zero result means that k > L. - M. F. Hasler, Aug 07 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jan 27 2017
STATUS
approved