login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281458
Expansion of Product_{k>=1} (1 + x^(7*k-5)).
8
1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 3, 0, 2, 0, 0, 1, 0, 3, 0, 3, 0, 1, 1, 0, 4, 0, 4, 0, 1, 1, 0, 4, 0, 5, 0, 2, 1, 0, 5, 0, 7, 0, 3, 1, 0, 5, 0, 8, 0, 5, 1, 1, 6, 0, 10, 0, 6
OFFSET
0,26
LINKS
FORMULA
a(n) ~ exp(sqrt(n/21)*Pi) / (2^(9/7)*21^(1/4)*n^(3/4)) * (1 - (3*sqrt(21)/(8*Pi) + 11*Pi/(336*sqrt(21))) / sqrt(n)). - Vaclav Kotesovec, Jan 22 2017, extended Jan 24 2017
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[(1 + x^(7*k - 5)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 7] == 2, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 22 2017
STATUS
approved