Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 12 2021 22:24:48
%S 1,2,0,0,2,0,0,1,2,2,0,3,2,0,0,2,4,0,0,0,2,0,0,2,0,2,0,2,0,0,0,0,3,2,
%T 0,0,6,0,0,0,1,4,0,2,2,0,0,2,2,4,0,0,0,0,0,0,4,2,0,0,2,0,0,0,2,2,0,0,
%U 2,0,0,2,0,0,0,3,4,0,0,2,0,4,0,0,2,0,0
%N Expansion of f(x, x) * f(x^7, x^11) in powers of x where f(, ) is Ramanujan's general theta function.
%H G. C. Greubel, <a href="/A281453/b281453.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - _N. J. A. Sloane_, Jan 30 2017
%F Euler transform of a period 36 sequence.
%F G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 2*k)).
%F G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(18*k-11)) * (1 + x^(18*k-7)) * (1 - x^(18*k)).
%F a(4*n + 2) = a(8*n + 5) = a(16*n + 3) = a(32*n + 31) = a(64*n + 55) = a(128*n + 39) = 0.
%F a(4*n + 3) = A281451(n). a(8*n + 1) = 2 * A281492(n). a(16*n + 7) = A281452(n). a(32*n + 15) = 2 * A281491(n). a(128*n + 103) = 2 * A281490(n).
%F a(n) = A122865(3*n) = A122856(6*n) = A258278(6*n) = a(64*n + 7). a(n) = -A256269(9*n + 1).
%F a(n) = b(9*n + 1) where b = A002654, A035154, A091400, A113446, A122864, A125061, A129448, A138950, A163746, A256276, A258228, A258256.
%F 2 * a(n) = b(9*n + 1) where b = A105673, A122857, A258034, A259761. 2 * a(n) = - b(9*n+1) where b = A138949, A256280, A258292. 4 * a(n) = A004018(9*n + 1).
%F Convolution of A000122 and A205808.
%e G.f. = 1 + 2*x + 2*x^4 + x^7 + 2*x^8 + 2*x^9 + 3*x^11 + 2*x^12 + ...
%e G.f. = q + 2*q^10 + 2*q^37 + q^64 + 2*q^73 + 2*q^82 + 3*q^100 + ...
%t a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 1, KroneckerSymbol[ -4, #] &]];
%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^7, x^18] QPochhammer[ -x^11, x^18] QPochhammer[ x^18], {x, 0, n}];
%t a[ n_] := If[ n < 0, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 1])];
%o (PARI) {a(n) = if( n<0, 0, sumdiv(9*n + 1, d, kronecker(-4, d)))};
%o (PARI) {a(n) = if( n<0, 0, my(m = 9*n + 1, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 1 || k%9 == 8), s+=(j>0)+1)); s)};
%o (PARI) {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};
%Y Cf. A000122, A002654, A004018, A035154, A091400, A105673, A113446, A122856, A122857.
%Y Cf. A122864, A122865, A125061, A129448, A138949, A138950, A163746, A205808, A256276.
%Y Cf. A256280, A258034, A258228, A258256, A258278, A258292, A259761.
%Y Cf. A281451, A281452, A281490, A281491, A281492.
%K nonn
%O 0,2
%A _Michael Somos_, Jan 26 2017