login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281267
Main diagonal of A276554.
6
1, -1, -3, 8, 13, -51, -120, 538, 781, -5419, -3053, 47673, 5080, -427740, 136462, 3922383, -3278067, -34819588, 48561567, 299316651, -603368637, -2509708844, 6948730643, 20210062532, -76150197416, -152569240051, 801154765564, 1039352472008, -8158396721266
OFFSET
0,3
COMMENTS
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)
LINKS
FORMULA
a(n) = [x^n] exp(-n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018
MATHEMATICA
nmax = 40; Table[SeriesCoefficient[Product[(1 - x^k)^(n*k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Apr 17 2017 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 13 2017
STATUS
approved