login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^(6*k-1)).
12

%I #25 Nov 24 2020 02:23:07

%S 1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,2,1,0,0,0,1,

%T 2,1,0,0,0,1,3,1,0,0,0,2,3,1,0,0,0,3,4,1,0,0,1,4,4,1,0,0,1,5,5,1,0,0,

%U 2,7,5,1,0,0,3,8,6,1,0,0,5,10,6,1,0,1

%N Expansion of Product_{k>=1} (1 + x^(6*k-1)).

%C Convolution of this sequence and A280456 is A098884.

%H Vaclav Kotesovec, <a href="/A281244/b281244.txt">Table of n, a(n) for n = 0..10000</a>

%H Vaclav Kotesovec, <a href="/A281244/a281244_1.jpg">Graph - minor asymptotic term</a>, (Pi/144 - 9/(4*Pi))/sqrt(2) = -0.49100125...

%F a(n) ~ exp(sqrt(n/2)*Pi/3) / (2^(25/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/144 - 9/(4*Pi)) / sqrt(2*n)).

%F G.f.: Sum_{k>=0} x^(k*(3*k + 2)) / Product_{j=1..k} (1 - x^(6*j)). - _Ilya Gutkovskiy_, Nov 24 2020

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(

%p [0$5, 1, 0$4, -1, 1][1+irem(d, 12)]*d, d=

%p numtheory[divisors](j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jan 18 2017

%t nmax = 200; CoefficientList[Series[Product[(1 + x^(6*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 6] == 5, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

%Y Cf. A262928, A147599, A281243, A281245.

%Y Cf. A261612, A169975, A280454, A280456, A280457.

%K nonn

%O 0,29

%A _Vaclav Kotesovec_, Jan 18 2017