login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281243
Expansion of Product_{k>=1} (1 + x^(5*k-1)).
18
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 1, 0, 0, 2, 3, 1, 0, 0, 3, 4, 1, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 2, 7, 5, 1, 0, 3, 8, 6, 1, 0, 5, 10, 6, 1, 1, 6, 12, 7, 1, 1, 9, 14, 7, 1, 2, 11, 16, 8, 1
OFFSET
0,24
COMMENTS
Convolution of this sequence and A280454 is A203776.
LINKS
FORMULA
a(n) ~ exp(sqrt(n/15)*Pi) / (2^(9/5)*15^(1/4)*n^(3/4)) * (1 + (Pi/(240*sqrt(15)) - 3*sqrt(15)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
G.f.: Sum_{k>=0} x^(k*(5*k + 3)/2) / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Nov 24 2020
MATHEMATICA
nmax = 200; CoefficientList[Series[Product[(1 + x^(5*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 5] == 4, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 18 2017
STATUS
approved