login
A280923
Degree of O(n,C), the orthogonal group, as an algebraic variety.
2
4, 16, 80, 768, 9536, 223232, 6867200, 393936896, 29989282816, 4225123221504, 795427838939136, 275571189819113472, 128240735455510216704, 109332361699222156738560, 125729867860804073988096000, 263919716304200619134696816640, 749827702212803707621023160729600, 3876699219598969046471294814225694720
OFFSET
2,1
LINKS
M. Brandt, D. Bruce, T. Brysiewicz, R. Krone, E. Robeva, The degree of SO(n), arXiv:1701.03200 [math.AG], 2017.
FORMULA
a(n) = 2^(n)*det(binomial(2n-2i-2j, n-2i))_{i,j=1..floor(n/2)}.
a(n) = 2*A280921(n).
a(2n+1) = 2^(2n+1)*A280922(n).
EXAMPLE
For n = 4 we have a(4) = 2^4*det({6,1},{1,1}) = 2^4*(6-1) = 80.
MATHEMATICA
a[n_] := 2^n Det[Table[Binomial[2n-2i-2j, n-2i], {i, 1, n/2}, {j, 1, n/2}]]
Table[a[n], {n, 2, 19}] (* Jean-François Alcover, Aug 12 2018 *)
PROG
(PARI) a(n) = 2^n*matdet(matrix(n\2, n\2, i, j, binomial(2*n-2*i-2*j, n-2*i))); \\ Michel Marcus, Jan 14 2017
CROSSREFS
Sequence in context: A374982 A003471 A002777 * A118997 A337839 A001257
KEYWORD
nonn
AUTHOR
Taylor Brysiewicz, Jan 10 2017
STATUS
approved