login
A280303
Number of binary necklaces of length n with no subsequence 00000.
4
1, 2, 3, 5, 7, 12, 17, 31, 51, 91, 155, 287, 505, 930, 1695, 3129, 5759, 10724, 19913, 37239, 69643, 130745, 245715, 463099, 873705, 1651838, 3126707, 5927817, 11251031, 21382558, 40679233, 77475673, 147694719, 281822847, 538213671, 1028714071, 1967728553
OFFSET
1,2
COMMENTS
a(n) is the number of cyclic sequences of length n consisting of zeros and ones that do not contain five consecutive zeros provided we consider as equivalent those sequences that are cyclic shifts of each other.
LINKS
P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
FORMULA
a(n) = (1/n) * Sum_{d divides n} totient(n/d) * A074048(d).
G.f.: Sum_{k>=1} (phi(k)/k) * log(1/(1-B(x^k))) where B(x) = x*(1+x+x^2+x^3+x^4).
EXAMPLE
a(5)=7 because we have seven binary cyclic sequences (necklaces) of length 5 that avoid five consecutive zeros: 00001, 00011, 00101, 00111, 01101, 01111, 11111.
CROSSREFS
Row 5 of A322057.
Sequence in context: A206290 A091696 A334683 * A048808 A263358 A239915
KEYWORD
nonn
AUTHOR
Petros Hadjicostas and Lingyun Zhang, Dec 31 2016
EXTENSIONS
a(34) onwards from Andrew Howroyd, Jan 25 2024
STATUS
approved