login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280219
a(1) = 1, a(n+1) is the numerator of n-th partial fraction of the continued fraction [1; 3, 9, 27, ..., 3^n].
4
1, 4, 37, 1003, 81280, 19752043, 14399320627, 31491333963292, 206614656532479439, 4066796316020126761129, 240140255871287121650385760, 42540125910897696055021012987849, 22607567054453522745047709284925846169, 36043764129000043869363596706325850854686436, 172396206472341818392860586297603696245873653954653
OFFSET
1,2
LINKS
FORMULA
a(n) = 3^(n-1)*a(n-1) + a(n-2).
EXAMPLE
G.f. = x + 4*x^2 + 37*x^3 + 1003*x^4 + 81280*x^5 + 19752043*x^6 + ...
a(3) = 37, the numerator of 1 + 1/(3 + 1/9) = 37/28.
MATHEMATICA
f[n_] := Numerator[ FromContinuedFraction[ Reverse[3^Range[0, n -1]] ]]; Array[f, 14] (* Robert G. Wilson v, Dec 30 2016 *)
CROSSREFS
Denominators are in A015474.
Sequence in context: A183509 A220245 A371441 * A027461 A144991 A073237
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Dec 29 2016
STATUS
approved