login
A280205
Numbers k such that (16*10^k + 197) / 3 is prime.
0
0, 2, 3, 5, 8, 10, 111, 114, 456, 1158, 1241, 1462, 1736, 1827, 2523, 2812, 3305, 5392, 5897, 6174, 13683, 17088, 23771, 28448, 127259, 142058, 164122
OFFSET
1,2
COMMENTS
For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 3 followed by the digits 99 is prime (see Example section).
a(28) > 2*10^5.
EXAMPLE
3 is in this sequence because (16*10^3 + 197) / 3 = 5399 is prime.
Initial terms and associated primes:
a(1) = 0, 71;
a(2) = 2, 599;
a(3) = 3, 5399;
a(4) = 5, 533399;
a(5) = 8, 533333399; etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(16*10^# + 197) / 3] &]
PROG
(PARI) is(n)=ispseudoprime((16*10^n + 197)/3) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
nonn,more,hard
AUTHOR
Robert Price, Dec 28 2016
EXTENSIONS
a(25)-a(27) from Robert Price, Apr 03 2019
STATUS
approved