login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280077
Partial sums of A007429 (Sum_{d|n} sigma(d)).
5
1, 5, 10, 21, 28, 48, 57, 83, 101, 129, 142, 197, 212, 248, 283, 340, 359, 431, 452, 529, 574, 626, 651, 781, 819, 879, 937, 1036, 1067, 1207, 1240, 1360, 1425, 1501, 1564, 1762, 1801, 1885, 1960, 2142, 2185, 2365, 2410, 2553, 2679, 2779, 2828, 3113, 3179
OFFSET
1,2
COMMENTS
sigma(n) is the sum of the divisors of n (A000203).
LINKS
FORMULA
a(n) = Sum_{i=1..n} A007429(i).
a(n) = Sum_{k=1..n} A000203(k) * floor(n/k). - Daniel Suteu, May 28 2018
a(n) = Sum_{k=1..n} A000005(k)/2 * floor(n/k) * floor(1+n/k). - Daniel Suteu, May 28 2018
a(n) ~ Pi^4 * n^2 / 72. - Vaclav Kotesovec, Nov 06 2018
G.f.: (1/(1-x)) * Sum_{k>=1} sigma(k) * x^k/(1 - x^k). - Seiichi Manyama, Jul 24 2022
PROG
(Magma) [&+[&+[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, sigma(d))); \\ Michel Marcus, May 29 2018
(PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, Jul 24 2022
CROSSREFS
Cf. A000203, A237349 (partial sums of A211776), A280078 (partial products of A007429).
Sequence in context: A001157 A242644 A002800 * A372054 A295952 A132174
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2016
STATUS
approved