login
A279657
T(n,k) = Number of n X k 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
11
0, 1, 0, 0, 3, 0, 3, 27, 24, 0, 6, 254, 734, 232, 0, 24, 2301, 19986, 20448, 2232, 0, 72, 19053, 498424, 1546164, 549608, 20880, 0, 232, 149696, 11256083, 104452983, 113887852, 14309072, 190656, 0, 720, 1124969, 239891281, 6415919752
OFFSET
1,5
COMMENTS
Table starts
.0.......1..........0..............3..................6....................24
.0.......3.........27............254...............2301.................19053
.0......24........734..........19986.............498424..............11256083
.0.....232......20448........1546164..........104452983............6415919752
.0....2232.....549608......113887852........20868369045.........3484404510555
.0...20880...14309072.....8077041000......4019412007893......1824673552805793
.0..190656..362942080...556408163556....752482408442895....928920011450982106
.0.1707264.9010004672.37457887289336.137719420200247895.462385405050721564618
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1).
k=2: [order 6] for n>7.
k=3: [order 9] for n>10.
k=4: [order 24] for n>25.
k=5: [order 42] for n>43.
Empirical for row n:
n=1: a(n) = 6*a(n-1) -6*a(n-2) -16*a(n-3) +12*a(n-4) +24*a(n-5) +8*a(n-6) for n>8.
n=2: [order 13].
n=3: [order 51] for n>53.
EXAMPLE
Some solutions for n=3, k=4
..0..0..0..1. .0..0..1..2. .0..0..0..1. .0..0..1..2. .0..1..0..2
..2..1..1..0. .0..1..2..2. .0..2..2..0. .0..1..2..0. .2..1..1..0
..1..0..1..2. .2..1..0..2. .0..0..2..1. .2..0..2..1. .1..2..0..0
CROSSREFS
Row 1 is A279300.
Sequence in context: A128252 A230675 A327673 * A272722 A229694 A033596
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2016
STATUS
approved