login
A279440
Number of ways to place 6 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.
9
0, 0, 6, 2040, 71400, 1005720, 8421630, 50092896, 233483040, 905925600, 3045791430, 9125544120, 24868110696, 62593429080, 147255640350, 326843422080, 689604309120, 1391614736256, 2699616160710, 5055848825400, 9173923662120, 16177675640280, 27798546316926, 46651469520480
OFFSET
1,3
COMMENTS
Column 7 of triangle A279445.
Rotations and reflections of placements are counted. For numbers if they are to be ignored see A279450.
For condition "no more than 2 points on straight lines at any angle", see A194191.
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = (n^12 -55*n^10 +210*n^9 +93*n^8 -2220*n^7 +5855*n^6 -7350*n^5 +4786*n^4 -1440*n^3 +120*n^2)/720.
a(n) = 13*a(n-1) -78*a(n-2) +286*a(n-3) -715*a(n-4) +1287*a(n-5) -1716*a(n-6) +1716*a(n-7) -1287*a(n-8) +715*a(n-9) -286*a(n-10) +78*a(n-11) -13*a(n-12) +*a(n-13).
G.f.: 6*x^3*(1 +327*x +7558*x^2 +39154*x^3 +56220*x^4 +14724*x^5 -6262*x^6 -978*x^7 +131*x^8 +5*x^9) / (1 -x)^13. - Colin Barker, Dec 22 2016
MATHEMATICA
Table[(n^12 - 55 n^10 + 210 n^9 + 93 n^8 - 2220 n^7 + 5855 n^6 - 7350 n^5 + 4786 n^4 - 1440 n^3 + 120 n^2)/720, {n, 24}] (* or *)
Rest@ CoefficientList[Series[6 x^3 (1 + 327 x + 7558 x^2 + 39154 x^3 + 56220 x^4 + 14724 x^5 - 6262 x^6 - 978 x^7 + 131 x^8 + 5 x^9)/(1 - x)^13, {x, 0, 24}], x] (* Michael De Vlieger, Dec 22 2016 *)
PROG
(PARI) concat(vector(2), Vec(6*x^3*(1 +327*x +7558*x^2 +39154*x^3 +56220*x^4 +14724*x^5 -6262*x^6 -978*x^7 +131*x^8 +5*x^9) / (1 -x)^13 + O(x^30))) \\ Colin Barker, Dec 22 2016
CROSSREFS
Same problem but 2..5,7,8,9 points: A083374, A279437, A279438, A279439, A279441, A279442, A279443.
Sequence in context: A209737 A209458 A209520 * A004817 A089535 A059081
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 22 2016
STATUS
approved