login
A279398
a(n) is the smallest prime primitive root modulo A193305(n).
2
3, 5, 2, 3, 3, 5, 7, 2, 7, 2, 3, 3, 5, 3, 3, 5, 3, 3, 5, 2, 7, 3, 5, 3, 3, 11, 2, 7, 2, 7, 7, 5, 3, 2, 5, 2, 3, 5, 3, 5, 5, 11, 3, 7, 2, 3, 3, 17, 3, 3, 3, 3, 7, 5, 3, 5, 7, 3
OFFSET
1,1
COMMENTS
Values taken from A103309 (Robert Israel).
If there should be no prime primitive root for A193305(n) then a(n) = 0.
EXAMPLE
n = 1: 2^k (mod 4) is never 1 for k >=1. 3^1 = 3, 3^2 = 3^phi(4) = 9 == 1 (mod 4).
CROSSREFS
Sequence in context: A076562 A306220 A057673 * A241429 A200109 A156060
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Jan 18 2017
STATUS
approved