login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279371
Expansion of F(q) + 4*F(q^2) + 8*F(q^4) in powers of q where F(q) = q * (f(-q) * f(-q^11))^2.
2
1, 2, -1, 2, 1, -2, -2, -8, -2, 2, 1, -2, 4, -4, -1, 12, -2, -4, 0, 2, 2, 2, -1, 8, -4, 8, 5, -4, 0, -2, 7, -8, -1, -4, -2, -4, 3, 0, -4, -8, -8, 4, -6, 2, -2, -2, 8, -12, -3, -8, 2, 8, -6, 10, 1, 16, 0, 0, 5, -2, 12, 14, 4, -8, 4, -2, -7, -4, 1, -4, -3, 16, 4
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Fourier expansion of a multiplicative weight 2 cusp form on Gamma_0(44).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) is multiplicative with a(11^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) for p != 11.
a(2*n + 1) = A006571(2*n + 1).
EXAMPLE
G.f. = q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 - 2*q^7 - 8*q^8 - 2*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^11])^2 + 4 q^2 (QPochhammer[ q^2] QPochhammer[ q^22])^2 + 8 q^4 (QPochhammer[ q^4] QPochhammer[ q^44])^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A, F); if( n<1, 0, A = x * O(x^n); F = x * (eta(x + A) * eta(x^11 + A))^2; polcoeff( F + 4*subst(F, x, x^2) + 8*subst(F, x, x^4), n))};
(Magma) A := Basis( CuspForms( Gamma0(44), 2), 79); A[1] + 2*A[2] - A[3] + 2*A[4];
CROSSREFS
Cf. A006571.
Sequence in context: A089610 A102566 A328771 * A134156 A342156 A324884
KEYWORD
sign,mult
AUTHOR
Michael Somos, Dec 10 2016
STATUS
approved