login
A279279
Expansion of Product_{k>=1} (1 + x^(k*(2*k-1))).
6
1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2
OFFSET
0,67
COMMENTS
Number of partitions of n into distinct hexagonal numbers (A000384).
FORMULA
G.f.: Product_{k>=1} (1 + x^(k*(2*k-1))).
EXAMPLE
a(67) = 2 because we have [66, 1] and [45, 15, 6, 1].
MATHEMATICA
nmax = 120; CoefficientList[Series[Product[1 + x^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 09 2016
STATUS
approved