login
A279271
Exponential transform of the Pell numbers.
2
1, 1, 3, 12, 57, 320, 2065, 14954, 119585, 1044184, 9867633, 100185294, 1086173121, 12510549116, 152422123321, 1956974934290, 26391647743937, 372769201632784, 5500416368181921, 84594395013757398, 1353277808896178145, 22476374660911200068, 386925983827921358665, 6893254434792968631674
OFFSET
0,3
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric W. Weisstein MathWorld, Exponential Transform
Eric Weisstein's World of Mathematics, Pell Number
FORMULA
E.g.f.: exp(exp(x)*sinh(sqrt(2)*x)/sqrt(2)).
EXAMPLE
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 57*x^4/4! + 320*x^5/5! + 2065*x^6/6! + ...
MATHEMATICA
Range[0, 23]! CoefficientList[Series[Exp[Exp[x] Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, 23}], x]
PROG
(PARI) x='x + O('x^30); round( Vec(serlaplace(exp(exp(x)*sinh(sqrt(2)*x) /sqrt(2)))) ) \\ G. C. Greubel, Dec 13 2016
CROSSREFS
Sequence in context: A027710 A307495 A302101 * A293469 A009248 A012709
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 12 2016
STATUS
approved