login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279245
Number of subsets of {1, 2, 3, ..., n} that include no consecutive odd integers.
1
1, 2, 4, 6, 12, 20, 40, 64, 128, 208, 416, 672, 1344, 2176, 4352, 7040, 14080, 22784, 45568, 73728, 147456, 238592, 477184, 772096, 1544192, 2498560, 4997120, 8085504, 16171008, 26165248, 52330496, 84672512, 169345024, 274006016, 548012032, 886702080
OFFSET
0,2
COMMENTS
For n>3 there are 2 cases for the subsets: the first element '1' is included or not. If '1' is not included, then the subset consists of elements from {2, 3, 4, ..., n}. The number of subsets that include no element smaller than '3' is a(n-2); prepending the element '2' to each of those gives us another a(n-2) subsets, for a total of 2a(n-2) subsets. In the other case, '1' is included, and since 1 and 3 are consecutive odd integers, '3' is excluded, so the subset consists of elements from {1, 2, 4, 5, ..., n}. The number of subsets that include no element smaller than '5' is a(n-4), and since there are 2^2=4 subsets of {2, 4}, the number of subsets that include '1' is 4a(n-4). Hence a(n) = 2a(n-2) + 4a(n-4).
FORMULA
Recursive formula: a(0)=1, a(1)=2, a(2)=4, a(3)=6; for n > 3, a(n) = 2a(n-2) + 4a(n-4).
G.f.: -(2*x^3+2*x^2+2*x+1)/(4*x^4+2*x^2-1). - Alois P. Heinz, Dec 09 2016
a(n) = 2a(n-2) + 4a(n-4). - Charles R Greathouse IV, Dec 13 2016
EXAMPLE
a(3)=6; the 6 subsets of {1, 2, 3} that contain no consecutive odd integers are {}, {1}, {2}, {3}, {1,2}, {2,3}.
MATHEMATICA
LinearRecurrence[{0, 2, 0, 4}, {1, 2, 4, 6}, 40] (* Harvey P. Dale, Mar 21 2018 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; 4, 0, 2, 0]^n*[1; 2; 4; 6])[1, 1] \\ Charles R Greathouse IV, Dec 13 2016
CROSSREFS
Sequence in context: A178901 A164146 A370582 * A090906 A047141 A341858
KEYWORD
nonn,easy
AUTHOR
Baris Arslan, Dec 08 2016
STATUS
approved