OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
FORMULA
O.g.f.: x^2*(3 + x + x^2 + 3*x^3)/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
a(5*m+r) = 4*m*(5*m + 2*r) + a(r), where m >= 0 and 0 <= r < 5. Example: for m=4 and r=3, a(5*4+3) = a(23) = 4*4*(5*4 + 2*3) + a(3) = 416 + 7 = 423.
Sum_{n>=2} 1/a(n) = Pi^2/120 + sqrt(29 - 62/sqrt(5))*Pi/8 + 5/16. - Amiram Eldar, Sep 26 2022
MATHEMATICA
Table[Floor[4 n^2/5], {n, 0, 60}]
LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {0, 0, 3, 7, 12, 20, 28}, 60] (* Harvey P. Dale, Nov 07 2020 *)
PROG
(PARI) vector(60, n, n--; floor(4*n^2/5))
(Python) [int(4*n**2/5) for n in range(60)]
(Sage) [floor(4*n^2/5) for n in range(60)]
(Magma) [4*n^2 div 5: n in [0..60]];
CROSSREFS
Cf. A090223: floor(4*n/5).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 07 2016
STATUS
approved