login
A278966
Least Hamming weight of multiples of the n-th prime.
4
1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 4, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2
OFFSET
1,2
COMMENTS
Since all primes after the first are odd, a(n) > 1 for n > 1.
a(n) = 2 if and only if A014664(n) is even, or equivalently prime(n) is not in A014663. - Robert Israel, Dec 08 2016
If prime(n) = A000668(k), then a(n) = A000043(k). - Robert Israel, Dec 20 2016
LINKS
MAPLE
f:= proc(n) local p, R, V, W, k, v, r;
p:= ithprime(n);
R:= {seq(2 &^ i mod p, i=0..numtheory:-order(2, p)-1)};
Rm:= map(t -> p-t, R);
V:= R;
W:= V;
for k from 2 do
if nops(V intersect Rm) > 0 then return k fi;
V:= {seq(seq(v+r mod p, v=V), r=R)} minus W;
W:= W union V;
od
end proc:
f(1):= 1:
map(f, [$1..100]); # Robert Israel, Dec 20 2016
MATHEMATICA
a[n_] := Module[{p, R, V, W, k, v, r}, p = Prime[n]; R = Union @ Table[ PowerMod[2, i, p], {i, 0, MultiplicativeOrder[2, p]-1}]; Rm = p - R; V = R; W = V; For[k = 2, True, k++, If[Length[V ~Intersection~ Rm] > 0, Return[k]]; V = Union@ Flatten@ Table[Table[v + Mod[r, p], {v, V}], {r, R}] ~Complement~ W; {W, W ~Union~ V}]];
a[1] = 1;
Array[a, 100] (* Jean-François Alcover, Jun 08 2020, after Robert Israel *)
PROG
(PARI) a(n, p=prime(n))=my(o=znorder(Mod(2, p)), v1=Set(powers(Mod(2, p), o)), v=v1, s=1); while(!setsearch(v, Mod(0, p)), v=setbinop((x, y)->x+y, v, v1); s++); s
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved