login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278843
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j).
8
1, 2, 53, 19148, 97432285, 7146659536022, 7683122105385590481, 122557371932066196769721048, 29280740446653388021872592300048913, 105552099397122165176384278493772205485181002, 5775235099464970103806328103231969172586171168151193533
OFFSET
0,2
LINKS
Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
Wikipedia, Hankel matrix.
FORMULA
Det(M(n)) = n + 1 (see Mays and Wojciechowski, 2000). - Stefano Spezia, Dec 08 2023
EXAMPLE
From Stefano Spezia, Dec 08 2023: (Start)
a(4) = 97432285:
2, 5, 14, 42;
5, 14, 42, 132;
14, 42, 132, 429;
42, 132, 429, 1430.
(End)
MATHEMATICA
Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
PROG
(PARI) C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ Michel Marcus, Dec 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 29 2016
STATUS
approved