OFFSET
0,2
COMMENTS
In general, if m>0 and g.f. = Product_{k>=1} (1 - x^(5*k))^m/(1 - x^k)^(m+1) then a(n) ~ sqrt(4*m+5) * exp(Pi*sqrt(2*(4*m+5)*n/15)) / (4*sqrt(3)*5^((m+1)/2)*n). - Vaclav Kotesovec, Nov 24 2016
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2500
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015.
FORMULA
MATHEMATICA
CoefficientList[ Series[ Product[(1 - x^(5n))^12/(1 - x^n)^13, {n, 25}],
{x, 0, 25}], x] (* Robert G. Wilson v, Nov 23 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 23 2016
STATUS
approved