login
A278555
Expansion of Product_{n>=1} (1 - x^(5*n))^12/(1 - x^n)^13 in powers of x.
11
1, 13, 104, 637, 3276, 14808, 60541, 228124, 803010, 2667054, 8422715, 25446304, 73907808, 207209614, 562673618, 1484147681, 3811882087, 9553588317, 23407932874, 56161135485, 132132608899, 305240006266, 693150485885, 1548871015291, 3408852663762, 7395582677152
OFFSET
0,2
COMMENTS
In general, if m>0 and g.f. = Product_{k>=1} (1 - x^(5*k))^m/(1 - x^k)^(m+1) then a(n) ~ sqrt(4*m+5) * exp(Pi*sqrt(2*(4*m+5)*n/15)) / (4*sqrt(3)*5^((m+1)/2)*n). - Vaclav Kotesovec, Nov 24 2016
LINKS
FORMULA
G.f.: Product_{n>=1} (1 - x^(5*n))^12/(1 - x^n)^13.
A278559(n) = 5^2*63*A160460(n) + 5^5*52*a(n-1) + 5^7*63*A278556(n-2) + 5^10*6*A278557(n-3) + 5^12*A278558(n-4) for n >= 4.
a(n) ~ sqrt(53/15)*exp(sqrt(106*n/15)*Pi)/(62500*n). - Vaclav Kotesovec, Nov 24 2016
MATHEMATICA
CoefficientList[ Series[ Product[(1 - x^(5n))^12/(1 - x^n)^13, {n, 25}],
{x, 0, 25}], x] (* Robert G. Wilson v, Nov 23 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 23 2016
STATUS
approved