login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278330
Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, U, X.
6
1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984, 7019, 11148, 35686, 62181, 182776, 339350, 942507, 1841208, 4887096, 9921685, 25442304, 53190380, 132928715, 284198328, 696276202, 1514363221, 3654567764, 8053235650, 19212546163, 42762014028, 101125071372
OFFSET
0,3
LINKS
Wikipedia, Pentomino
Index entries for linear recurrences with constant coefficients, signature (0,2,2,8,4,21,-8,-4,-6,0,-16,-8).
FORMULA
G.f.: -(4*x^6+x^3-1) / (8*x^12 +16*x^11 +6*x^9 +4*x^8 +8*x^7 -21*x^6 -4*x^5 -8*x^4 -2*x^3 -2*x^2+1).
a(n) mod 2 = A079978(n).
EXAMPLE
a(2) = 2, a(3) = 1:
.___. .___. ._____.
| | | | | ._. |
| ._| |_. | |_| |_|
|_| | | |_| |_ _|
| | | | | |_| |
|___| |___| |_____| .
MAPLE
a:= n-> (Matrix(12, (i, j)-> `if`(i+1=j, 1, `if`(i=12,
[-8, -16, 0, -6, -4, -8, 21, 4, 8, 2, 2, 0][j], 0)))^n.
<<1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984>>)[1, 1]:
seq(a(n), n=0..35);
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Nov 18 2016
STATUS
approved