login
A278157
T(n,k)=Number of nXk 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) or (1,0), with upper left element zero.
8
0, 0, 0, 0, 2, 0, 0, 7, 7, 0, 0, 22, 42, 22, 0, 0, 75, 268, 268, 75, 0, 0, 254, 1759, 3382, 1759, 254, 0, 0, 859, 11675, 43876, 43876, 11675, 859, 0, 0, 2906, 77102, 571214, 1118946, 571214, 77102, 2906, 0, 0, 9831, 509336, 7404889, 28772962, 28772962, 7404889
OFFSET
1,5
COMMENTS
Table starts
.0....0.......0..........0............0...............0.................0
.0....2.......7.........22...........75.............254...............859
.0....7......42........268.........1759...........11675.............77102
.0...22.....268.......3382........43876..........571214...........7404889
.0...75....1759......43876......1118946........28772962.........736017223
.0..254...11675.....571214.....28772962......1459438050.......73654449669
.0..859...77102....7404889....736017223.....73654449669.....7332741364328
.0.2906..509336...96014730..18830978857...3717851037151...730168696119876
.0.9831.3365082.1245182813.481877272697.187699707259842.72720692813101842
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 3*a(n-1) +a(n-2) +a(n-3) for n>4
k=3: [order 14] for n>15
k=4: [order 31]
k=5: [order 89] for n>91
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..0. .0..0..0..0. .0..0..1..1. .0..1..0..0. .0..0..1..0
..0..0..0..1. .1..1..0..1. .1..1..0..0. .0..1..1..0. .1..0..1..0
..0..1..0..1. .1..0..1..1. .1..0..1..0. .0..1..0..0. .1..1..0..0
..0..1..0..1. .0..0..0..0. .1..1..0..0. .0..0..1..0. .1..0..1..0
CROSSREFS
Sequence in context: A094596 A143024 A271971 * A198232 A160213 A354661
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 13 2016
STATUS
approved