login
Numbers k such that k/6^m == 2 (mod 6), where 6^m is the greatest power of 6 that divides k.
8

%I #10 Feb 09 2021 02:25:00

%S 2,8,12,14,20,26,32,38,44,48,50,56,62,68,72,74,80,84,86,92,98,104,110,

%T 116,120,122,128,134,140,146,152,156,158,164,170,176,182,188,192,194,

%U 200,206,212,218,224,228,230,236,242,248,254,260,264,266,272,278

%N Numbers k such that k/6^m == 2 (mod 6), where 6^m is the greatest power of 6 that divides k.

%C Positions of 2 in A277544.

%C Numbers having 2 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program. Every term is even; see A277572.

%H Clark Kimberling, <a href="/A277568/b277568.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 5n + O(log n). - _Charles R Greathouse IV_, Nov 03 2016

%t z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]

%t p[b_, d_] := Flatten[Position[a[b], d]]

%t p[6, 1] (* A277567 *)

%t p[6, 2] (* A277568 *)

%t p[6, 3] (* A277569 *)

%t p[6, 4] (* A277570 *)

%t p[6, 5] (* A277571 *)

%o (PARI) is(n)=(n/6^valuation(n,6))%6==2 \\ _Charles R Greathouse IV_, Nov 03 2016

%Y Cf. A277544, A277567, A277569, A277572.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Nov 01 2016