Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 09 2022 11:06:26
%S 1,4,5,9,13,16,17,20,21,25,29,33,36,37,41,45,49,52,53,57,61,64,65,68,
%T 69,73,77,80,81,84,85,89,93,97,100,101,105,109,113,116,117,121,125,
%U 129,132,133,137,141,144,145,148,149,153,157,161,164,165,169,173
%N Numbers k such that k/4^m == 1 (mod 4), where 4^m is the greatest power of 4 that divides k.
%C Positions of 1 in A065882.
%C This is one sequence in a 3-way splitting of the positive integers; the other two are A036554 and A055050, as in the Mathematica program.
%C The asymptotic density of this sequence is 1/3. - _Amiram Eldar_, Mar 08 2021
%H Clark Kimberling, <a href="/A277549/b277549.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>.
%p filter:= n -> n/2^(2*floor(padic:-ordp(n,2)/2)) mod 4 = 1:
%p select(filter, [$1..1000]); # _Robert Israel_, Oct 20 2016
%t z = 160; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}];
%t p[b_, d_] := Flatten[Position[a[b], d]];
%t p[4, 1] (* A277549 *)
%t p[4, 2] (* A036554 *)
%t p[4, 3] (* A055050 *)
%o (PARI) isok(n) = n/4^valuation(n,4) % 4 == 1; \\ _Michel Marcus_, Oct 20 2016
%o (Python)
%o from itertools import count, islice
%o def A277549_gen(startvalue=1): # generator of terms >= startvalue
%o return filter(lambda n:(n>>((~n&n-1).bit_length()&-2))&3==1,count(max(startvalue,1)))
%o A277549_list = list(islice(A277549_gen(),30)) # _Chai Wah Wu_, Jul 09 2022
%Y Cf. A065882, A036554, A055050.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Oct 20 2016