login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-i)^n * Integral_{x>=0} H_n(i*x) * exp(-x), where H_n(x) is n-th Hermite polynomial, i=sqrt(-1).
2

%I #24 Feb 26 2020 06:44:27

%S 1,2,10,60,492,4920,59160,828240,13253520,238563360,4771297440,

%T 104968543680,2519245713600,65500388553600,1834010896798080,

%U 55020326903942400,1760650461445075200,59862115689132556800,2155036164826415270400,81891374263403780275200

%N a(n) = (-i)^n * Integral_{x>=0} H_n(i*x) * exp(-x), where H_n(x) is n-th Hermite polynomial, i=sqrt(-1).

%H G. C. Greubel, <a href="/A277472/b277472.txt">Table of n, a(n) for n = 0..400</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>, <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">Incomplete Gamma Function</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>

%F a(n) = exp(1/4)*(-2*i)^n * n!*( cos(Pi*n/2)*Gamma(n/2 +1, 1/4)/Gamma(n/2 +1) + i*Gamma((n+1)/2, 1/4)*sin(Pi*n/2)/Gamma((n+1)/2) ).

%F From _Peter Luschny_, Oct 19 2016: (Start)

%F a(n) = 2^n*(n!/floor(n/2)!)*Gamma(ceiling((n+1)/2),1/4)*exp(1/4).

%F The swinging factorial A056040(n) divides a(n). (End)

%t FunctionExpand@Table[Exp[1/4] (-2 I)^n n! (Cos[Pi n/2] Gamma[n/2 + 1, 1/4]/Gamma[n/2 + 1] + I Gamma[(n + 1)/2, 1/4] Sin[Pi n/2]/Gamma[(n + 1)/2]), {n, 0, 20}]

%t FunctionExpand@Table[2^n (n!/Floor[n/2]!) Gamma[Ceiling[(n+1)/2], 1/4] Exp[1/4], {n, 0, 19}] (* _Peter Luschny_, Oct 19 2016 *)

%o (Sage)

%o def A():

%o yield 1

%o yield 2

%o a, h, f, g, n, b = 10, 5, 1, 2, 2, False

%o while True:

%o yield a

%o if b:

%o f = h

%o h = 4 * n * h + 1

%o n += 1

%o a = (a * h) // f

%o else:

%o g += 4

%o a *= g

%o b = not b

%o a = A(); print([next(a) for _ in range(20)]) # _Peter Luschny_, Oct 19 2016

%o (PARI) for(n=0, 30, print1(round(2^n*(n!/floor(n/2)!)* incgam(ceil( (n+1)/2), 1/4)*exp(1/4)), ", ")) \\ _G. C. Greubel_, Jul 12 2018

%Y Cf. A056545, A277393, A277374.

%K nonn

%O 0,2

%A _Vladimir Reshetnikov_, Oct 16 2016