login
A277209
Partial sums of repdigit numbers (A010785).
0
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 56, 78, 111, 155, 210, 276, 353, 441, 540, 651, 873, 1206, 1650, 2205, 2871, 3648, 4536, 5535, 6646, 8868, 12201, 16645, 22200, 28866, 36643, 45531, 55530, 66641, 88863, 122196, 166640, 222195, 288861, 366638, 455526, 555525, 666636, 888858, 1222191, 1666635, 2222190
OFFSET
0,3
COMMENTS
More generally, the ordinary generating function for the partial sums of numbers that are repdigits in base k (for k > 1) is (Sum_{m = 1..(k-1)} m*x^m)/((1 - x)*(1 - x^(k-1))*(1 - k*x^(k-1)).
LINKS
Eric Weisstein's World of Mathematics, Repdigit
FORMULA
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/((1 - x)*(1 - x^9)*(1 - 10*x^9)).
a(n) = A000217(n) for n < 10.
a(n) = A046489(n-1) for n < 19.
EXAMPLE
a(0)=0;
a(1)=0+1=1;
a(2)=0+1+2=3;
a(3)=0+1+2+3=6;
...
a(10)=0+1+2+3+4+5+6+7+8+9+11=56;
a(11)=0+1+2+3+4+5+6+7+8+9+11+22=78;
a(12)=0+1+2+3+4+5+6+7+8+9+11+22+33=111, etc.
MATHEMATICA
CoefficientList[Series[x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6 + 8 x^7 + 9 x^8)/((1 - x) (1 - 10 x^9) (1 - x^9)), {x, 0, 50}], x]
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Ilya Gutkovskiy, Oct 05 2016
STATUS
approved