login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277182
E.g.f.: logarithm of G(x)/x where G(x) = ... x*exp(x^4) o x*exp(x^3) o x*exp(x^2) o x*exp(x), a composition of functions x*exp(x^n) for n = 1,2,3,...
3
1, 2, 18, 144, 1660, 27480, 548394, 12402992, 316789848, 9158652720, 296955697390, 10666960742328, 420121365404052, 17973670280757464, 828915057583647090, 40974375613614916320, 2161181874390019883056, 121176506157487442355168, 7199219738147125437960534, 451879288812982893026999720, 29885088906978769868636730540
OFFSET
1,2
COMMENTS
E.g.f. equals the logarithm of G(x)/x, where G(x) equals the e.g.f. of A277180.
LINKS
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 18*x^3/3! + 144*x^4/4! + 1660*x^5/5! + 27480*x^6/6! + 548394*x^7/7! + 12402992*x^8/8! + 316789848*x^9/9! + 9158652720*x^10/10! + 296955697390*x^11/11! + 10666960742328*x^12/12! + 420121365404052*x^13/13! + 17973670280757464*x^14/14! + 828915057583647090*x^15/15! + 40974375613614916320*x^16/16! +...
such that x*exp(A(x)) equals the infinite composition of functions:
x*exp(A(x)) = ... o x*exp(x^4) o x*exp(x^3) o x*exp(x^2) o x*exp(x),
which expands to begin:
x*exp(A(x)) = x + 2*x^2/2! + 9*x^3/3! + 100*x^4/4! + 1205*x^5/5! + 18006*x^6/6! + 350077*x^7/7! + 8088536*x^8/8! + 211371561*x^9/9! + 6176234890*x^10/10! + 200898827921*x^11/11! + 7219180413732*x^12/12! +...+ A277180(n)*x^n/n! +...
A related series expansion begins
exp(A(x)) = 1 + x + 3*x^2/2! + 25*x^3/3! + 241*x^4/4! + 3001*x^5/5! + 50011*x^6/6! + 1011067*x^7/7! + 23485729*x^8/8! + 617623489*x^9/9! + 18263529811*x^10/10! + 601598367811*x^11/11! + 21859800985969*x^12/12! +...
GENERATING METHOD.
Once can generate the e.g.f. by the following process.
Start with L_1 = x, then continue
L_2 = L_1 + x^2*exp(2*L_1)
L_3 = L_2 + x^3*exp(3*L_2)
L_4 = L_3 + x^4*exp(4*L_3)
...
L_{n+1} = L_{n} + x^(n+1)*exp( (n+1)*L_{n} )
...
which tends to e.g.f. A(x) as a limit.
Explicitly, the initial functions are:
L_1 = x
L_2 = x + x^2*exp(2*x)
L_3 = x + x^2*exp(2*x) + x^3*exp(3*x + 3*x^2*exp(2*x) )
L_4 = x + x^2*exp(2*x) + x^3*exp(3*x + 3*x^2*exp(2*x) ) + x^4*exp(4*x + 4*x^2*exp(2*x) + 4*x^3*exp(3*x + 3*x^2*exp(2*x) ) )
L_5 = x + x^2*exp(2*x) + x^3*exp( 3*x + 3*x^2*exp(2*x) ) + x^4*exp( 4*x + 4*x^2*exp(2*x) + 4*x^3*exp( 3*x + 3*x^2*exp(2*x) ) ) + x^5*exp( 5*x + 5*x^2*exp(2*x) + 5*x^3*exp( 3*x + 3*x^2*exp(2*x) ) + 5*x^4*exp( 4*x + 4*x^2*exp(2*x) + 4*x^3*exp( 3*x + 3*x^2*exp(2*x) ) ) )
...
The derivative of these series may be computed like so
L_1' = 1
L_2' = L_1' + 2*x^1*exp( 2*L_1 ) * (1 + x*L_1')
L_3' = L_2' + 3*x^2*exp( 3*L_2 ) * (1 + x*L_2')
L_4' = L_3' + 4*x^3*exp( 4*L_3 ) * (1 + x*L_3')
...
PROG
(PARI) {a(n) = my(A=x +x^2*O(x^n)); if(n<=0, 0, for(i=1, n, A = A*exp(A^i)); n!*polcoeff(log(A/x), n))}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x +x^2*O(x^n)); if(n<=0, 0, for(i=1, n, A = subst(A, x, x*exp(x^(n-i+1) +x*O(x^n))))); n!*polcoeff(log(A/x), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A277180 (x*exp(A(x))), A277183.
Sequence in context: A226733 A220244 A001804 * A052640 A290215 A208654
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 06 2016
STATUS
approved