login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277178
a(n) = Sum_{k=0..n} k*binomial(2*k,k)/2.
2
0, 1, 7, 37, 177, 807, 3579, 15591, 67071, 285861, 1209641, 5089517, 21314453, 88918353, 369734553, 1533115953, 6341759073, 26177411943, 107853629643, 443633635743, 1822098923943, 7473806605563, 30618895206483, 125303348573883, 512274592771083, 2092407173242983, 8539348101568335
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
FORMULA
a(n) = binomial(2*n,n) * (2*n + 1 - hypergeom([1,-n], [1/2-n], 1/4))/3.
a(n+1) - a(n) = A002457(n) = (2*n+1)!/n!^2.
Recurrence: (5*n + 2) * a(n) = (4*n + 2) * a(n-1) + n * a(n+1).
a(n) ~ sqrt(n) * 2^(2*n+1) / (3*sqrt(Pi)). - Vaclav Kotesovec, Jan 29 2019
G.f.: x/(1-x) * (1-4*x)^(-3/2). - Seiichi Manyama, Jan 29 2019
MAPLE
a:=n->sqrt(-1/27)-((n+1)/2)*binomial(2*(n+1), n+1)*hypergeom([1, n+3/2], [n+1], 4):
seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 03 2016
MATHEMATICA
Table[Binomial[2 n, n] (2 n + 1 - Hypergeometric2F1[1, -n, 1/2 - n, 1/4])/3, {n, 0, 30}]
PROG
(PARI) {a(n) = sum(k=0, n, k*binomial(2*k, k))/2} \\ Seiichi Manyama, Jan 29 2019
CROSSREFS
Row 3 of A323222.
Sequence in context: A177414 A125317 A006419 * A026673 A026878 A026862
KEYWORD
nonn
AUTHOR
STATUS
approved