%I #25 Nov 14 2016 13:11:07
%S 470,746,995,3061,3425,3486,11359,12233,16181,17142,18717,24976,30991,
%T 48138,61882,62293,63833,99770,103132,110651,111769,112407,117282,
%U 138939,149251,150296,161457,173581,174029,176096,188691,221737,225322,233565,235084,237651,262176,266889,279382,281398,284617,290328,292830
%N Numbers n such that A277118(n) = 17.
%C A277118 takes only the values 0, 3, 5, 7, 9, 11, 13, 15, and 17, so these are the indices of maximal terms in A277118.
%C Let p=A001359(n-1). Then n is in the sequence if and only if we have seven consecutive primes: either {p=30t+29 (t>=0),p+2,p+8,p+12,p+18,p+24,p+30} or {p,p+2,p+8,p+14,p+20,p+24,p+30} or {p,p+2,p+8,p+14,p+18,p+24,p+30}, but p+32 is composite. In the case, when also p+32 is prime, the numbers
%C {n} form sequence A277512.
%H Vladimir Shevelev, Peter J. C. Moses, <a href="https://arxiv.org/abs/1610.03385">Constellations of primes generated by twin primes</a>, arXiv:1610.03385 [math.NT], 2016.
%e a(1)=470, then we have seven primes: p=A001359(469) =30089, 30091, 30097, 30103,30109,30113,30119, but 30121 is composite (cf. comment).
%Y Cf. A001359, A277118, A277512.
%K nonn
%O 1,1
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Sep 30 2016