Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 03 2019 19:27:36
%S 4,10,16,22,23,29,35,41,48,54,60,66,67,73,79,85,92,98,104,110,111,117,
%T 123,129,136,142,148,154,155,161,167,173,180,186,192,198,199,205,211,
%U 217,224,230,236,242,243,249,255,261,268,274,280,286,287,293,299
%N Numbers k such that sin(k) < 0 and sin(k+2) < 0.
%C Guide to related sequences (a four-way splitting of the natural numbers):
%C A277093: sin(k) > 0 and sin(k+2) > 0
%C A277094: sin(k) > 0 and sin(k+2) < 0
%C A277095: sin(k) < 0 and sin(k+2) > 0
%C A277096: sin(k) < 0 and sin(k+2) < 0
%H Clark Kimberling, <a href="/A277096/b277096.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) ~ kn, where k = 2/(1-2/Pi) = 5.50387..., by the equidistribution theorem. - _Charles R Greathouse IV_, Oct 09 2016
%t z = 400; f[x_] := Sin[x];
%t Select[Range[z], f[#] > 0 && f[# + 2] > 0 &] (* A277093 *)
%t Select[Range[z], f[#] > 0 && f[# + 2] < 0 &] (* A277094 *)
%t Select[Range[z], f[#] < 0 && f[# + 2] > 0 &] (* A277095 *)
%t Select[Range[z], f[#] < 0 && f[# + 2] < 0 &] (* A277096 *)
%t SequencePosition[Table[If[Sin[n]<0,1,0],{n,400}],{1,_,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 03 2019 *)
%o (PARI) is(n)=my(x=frac(n/2/Pi)); x>1/2 && x<1-1/Pi \\ _Charles R Greathouse IV_, Oct 09 2016
%Y Cf. A277093, A277094, A277095.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Oct 01 2016