OFFSET
0,6
COMMENTS
A permutation, p, can be thought of as a set of points (i, p(i)). If you plot all the points and rotate the picture by 180 degrees then you get a permutation back.
T(n,k) is the number of size k subsets of S_n that remain unchanged by a rotation of 180 degrees.
FORMULA
T(n,k) = Sum_( binomial( n! - R(n), i ) * binomial( R(n), k-2*i ) for i in [0..floor(k/2)] ) where R(n) = A037223(n).
EXAMPLE
For n = 3 and k = 3, the subsets unchanged by rotating 180 degrees are {213,132,123}, {231,312,123}, {321,132,213} and {321,231,312} so T(3,3) = 4.
Triangle starts:
1, 1;
1, 1;
1, 2, 1;
1, 2, 3, 4, 3, 2, 1;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Christian Bean, Sep 28 2016
STATUS
approved