login
A276921
Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.
11
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 12, 24, 0, 1, 1, 3, 13, 66, 120, 0, 1, 1, 3, 13, 74, 450, 720, 0, 1, 1, 3, 13, 75, 530, 3690, 5040, 0, 1, 1, 3, 13, 75, 540, 4550, 35280, 40320, 0, 1, 1, 3, 13, 75, 541, 4670, 45570, 385560, 362880, 0
OFFSET
0,9
LINKS
Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
FORMULA
E.g.f. of column k: 1/(1-Sum_{i=1..k} x^i/i!).
A(n,k) = Sum_{j=0..k} A276922(n,j).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 6, 12, 13, 13, 13, 13, 13, ...
0, 24, 66, 74, 75, 75, 75, 75, ...
0, 120, 450, 530, 540, 541, 541, 541, ...
0, 720, 3690, 4550, 4670, 4682, 4683, 4683, ...
0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)
CROSSREFS
Main diagonal gives A000670.
Cf. A276922.
Sequence in context: A261440 A295684 A276890 * A339677 A333158 A293135
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 22 2016
STATUS
approved