login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276029
Number of ways to transform a sequence of n ones and n twos to a single number by continually removing two numbers and replacing them with their sum modulo 3.
2
1, 4, 27, 228, 2226, 23778, 270693, 3229106, 39922172, 507680620, 6604676830, 87549425068, 1178880306174, 16086844260290, 222045139578443, 3095457073064120, 43529719213465854, 616853383573066504, 8801227720060618544, 126344910516550743232
OFFSET
1,2
COMMENTS
Originally this entry had a reference to a paper on the arXiv by Caleb Ji, Enumerative Properties of Posets Corresponding to a Certain Class of No Strategy Games, arXiv:1608.06025 [math.CO], 2016. However, this article has since been removed from the arXiv. - N. J. A. Sloane, Sep 07 2018
LINKS
FORMULA
a(n) = b(0, n, n) where f(a, b, c) is the number of ways to reach one number beginning with a zeros, b ones, and c twos.
Then f(a, b, c) = f_1 + f_2 + f_3 + f_4 where f_1 = f(a-1, b, c) if a>=2 or a, b >=1 or a,c >=1, f_2 = f(a, b-2, c+1) if b >= 2, f_3 = f(a, b+1, c-2) if c >= 2, and f_4 = f(a+1, b-1, c-1) if b, c >= 1, and each are 0 otherwise. Initial terms: f(a, b, c) = 1 for all 1 <= a+b+c <= 2, where a, b, c >= 0.
MAPLE
b:= proc(x, y, z) option remember;
`if`(x+y+z=1, 1, `if`(y>0 and z>0, b(x+1, y-1, z-1), 0)+
`if`(x>1 or x>0 and y>0 or x>0 and z>0, b(x-1, y, z), 0)+
`if`(y>1, b(x, y-2, z+1), 0)+`if`(z>1, b(x, y+1, z-2), 0))
end:
a:= n-> b(0, n, n):
seq(a(n), n=1..35); # Alois P. Heinz, Aug 18 2016
MATHEMATICA
b[x_, y_, z_] := b[x, y, z] = If[x + y + z == 1, 1, If[y > 0 && z > 0, b[x + 1, y - 1, z - 1], 0] + If[x > 1 || x > 0 && y > 0 || x > 0 && z > 0, b[x - 1, y, z], 0] + If[y > 1, b[x, y - 2, z + 1], 0] + If[z > 1, b[x, y + 1, z - 2], 0]];
a[n_] := b[0, n, n];
Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A317103 A341962 A354588 * A160883 A362274 A328978
KEYWORD
nonn
AUTHOR
Caleb Ji, Aug 17 2016
EXTENSIONS
More terms from Alois P. Heinz, Aug 18 2016
STATUS
approved