OFFSET
1,1
COMMENTS
For many small n, a(n) = 0 when n is even and a(n) = 1 when n is odd, because a row of black stones can be played on the outer line of the board with a row of white stones running adjacent to the black stones, as in the following diagram:
B--B--W
|
B--W
|
B--W
|
B--W
|
o
What is the asymptotic behavior of this sequence?
Does a(n) exist for all n or does a constant c exist such that a(n) is undefined for n >= c (because no more legal moves are possible)?
LINKS
online-go.com, Learn to play Go: Placing stones (virtual 9x9 Go board).
Wikipedia, Go (game).
EXAMPLE
n=1: B--o
|
o
n=2: B--o B--W
| |
o o
n=3: B--o B--W B--W
| | |
o o B--o
|
o
n=4: B--o B--W B--W B--W
| | | |
o o B--o B--W
| |
o o
n=5: o o B--o B--o B--B--o
| | | | | |
B--o B--o B--o B--W B--W
| | | | |
o W W W W
n=6: o o o--B--o o--B--o B--B--o .--.--W
| | | | | | | | | |
B--o B--o B--o B--W B--W .--W
| | | | | |
o W W W W W
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jul 24 2016
STATUS
approved