OFFSET
1,1
COMMENTS
The number of partitions of k digits are [j-(j mod k)]/k. If j is not a multiple of k the last partition has j mod k digits. E.g.: the partitions of 3 digits of 5573670 are 557 and 367 plus a partition of one digit, 0 (here j=7 and k=3). - Paolo P. Lava, Aug 04 2016
EXAMPLE
3*9*6 + 39*6 = 396;
1*0*6*4 + 10*64 + 106*4 = 1064;
1*2*1*5*4 + 12*15*4 + 121*54 + 1215*4 = 12154.
MAPLE
P:=proc(q) local a, b, c, d, j, k, n;
for n from 1 to q do c:=0; for k from 1 to ilog10(n) do a:=1; b:=n; d:=ilog10(n)+1;
for j from 1 to trunc(d/k) do a:=a*(trunc(n/10^(d-j*k)) mod 10^k); od;
if d-trunc(d/k)*k>0 then a:=a*(n mod 10^(d-trunc(d/k)*k)); fi;
c:=c+a; od; if n=c then print(n); fi; od; end: P(10^6);
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Jul 19 2016
EXTENSIONS
a(18)-a(26) from Giovanni Resta, Jul 21 2016
STATUS
approved