login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274961
G.f.: 1 = ...((((1/(1-x) - a(1)*x )^2 - a(2)*x^2 )^2 - a(3)*x^3 )^2 - a(4)*x^4 )^2 -..., an infinite series of nested squares.
2
1, 2, 4, 12, 32, 112, 384, 1824, 6912, 34304, 154624, 852480, 4259840, 25968640, 143687680, 964366336, 5515771904, 37026332672, 230170296320, 1671801339904, 10772865351680, 80599119298560, 557712899309568, 4420637088022528, 31616746028793856, 259184403870121984, 1963369608274509824, 17005377989510168576, 132409252034306375680, 1172260103612874620928, 9575887243678308106240, 89085560504158762565632
OFFSET
1,2
LINKS
EXAMPLE
G.f.: 1 = ... ((((((((1/(1-x) - 1*x)^2 - 2*x^2)^2 - 4*x^3)^2 - 12*x^4)^2 - 32*x^5)^2 - 112*x^6)^2 - 384*x^7)^2 - 1824*x^8)^2 -...- a(n)*x^n)^2 -...
ILLUSTRATION OF GENERATING METHOD.
Start with G1 = 1/(1-x), and proceed as follows:
G2 = (G1 - 1*x)^2 = 1 + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 +...
G3 = (G2 - 2*x^2)^2 = 1 + 4*x^3 + 6*x^4 + 8*x^5 + 14*x^6 + 24*x^7 + 39*x^8 +...
G4 = (G3 - 4*x^3)^2 = 1 + 12*x^4 + 16*x^5 + 28*x^6 + 48*x^7 + 114*x^8 + 216*x^9 +...
G5 = (G4 - 12*x^4)^2 = 1 + 32*x^5 + 56*x^6 + 96*x^7 + 228*x^8 + 432*x^9 +...
G6 = (G5 - 32*x^5)^2 = 1 + 112*x^6 + 192*x^7 + 456*x^8 + 864*x^9 + 2144*x^10 +...
G7 = (G6 - 112*x^6)^2 = 1 + 384*x^7 + 912*x^8 + 1728*x^9 + 4288*x^10 + 9664*x^11 +...
G8 = (G7 - 384*x^7)^2 = 1 + 1824*x^8 + 3456*x^9 + 8576*x^10 + 19328*x^11 +...
G9 = (G8 - 1824*x^8)^2 = 1 + 6912*x^9 + 17152*x^10 + 38656*x^11 + 106560*x^12 +...
G10 = (G9 - 6912*x^9)^2 = 1 + 34304*x^10 + 77312*x^11 + 213120*x^12 + 532480*x^13 +...
G11 = (G10 - 34304*x^10)^2 = 1 + 154624*x^11 + 426240*x^12 + 1064960*x^13 +...
...
G_{n+1} = (G_{n} - a(n)*x^n)^2 = 1 + a(n+1)*x^(n+1) + a(n+2)*x^(n+2)/2 + a(n+3)*x^(n+3)/4 + a(n+4)*x^(n+4)/8 +...
...
PROG
(PARI) {a(n) = my(A=[1], G); for(i=1, n, A=concat(A, 0); G = 1/(1-x +x*O(x^#A)); for(m=1, #A, G = (G - A[m]*x^m)^2 ); A[#A] = polcoeff(G, #A)/2 ); A[n]}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* Informal quick print of initial N terms: */
{N=100; A=[1]; G = 1/(1-x +x^2*O(x^N)); for(m=1, N, A=concat(A, 0); G = (G - A[m]*x^m)^2; A[m+1] = polcoeff(G, m+1); print1(A[m], ", ")); print1(A[N], ", ")}
CROSSREFS
Cf. A274960.
Sequence in context: A216820 A148194 A289501 * A027695 A148195 A169807
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2016
STATUS
approved