login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274886
Triangle read by rows, the q-analog of the extended Catalan numbers A057977.
4
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1
OFFSET
0,12
COMMENTS
The q-analog of the extended Catalan numbers A057977 are univariate polynomials over the integers with degree floor((n+1)/2)*(floor((n+1)/2)-1)+1.
The q-analog of the Catalan numbers are A129175.
For a combinatorial interpretation in terms of the major index statistic of orbitals see A274888 and the link 'Orbitals'.
FORMULA
q-extCatalan(n,q) = (p*P(n,q))/(P(h,q)*P(h+1,q)) with P(n,q) = q-Pochhammer(n,q), h = floor(n/2) and p = 1-q if n is even else 1.
EXAMPLE
The polynomials start:
[0] 1
[1] 1
[2] 1
[3] q^2 + q + 1
[4] q^2 + 1
[5] (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q^2 - q + 1) * (q^4 + q^3 + q^2 + q + 1)
The coefficients of the polynomials are:
[ 0] [1]
[ 1] [1]
[ 2] [1]
[ 3] [1, 1, 1]
[ 4] [1, 0, 1]
[ 5] [1, 1, 2, 2, 2, 1, 1]
[ 6] [1, 0, 1, 1, 1, 0, 1]
[ 7] [1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1]
[ 8] [1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1]
[ 9] [1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1]
[10] [1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1]
MAPLE
QExtCatalan := proc(n) local h, p, P;
P := x -> QDifferenceEquations:-QPochhammer(q, q, x);
h := iquo(n, 2): p := `if`(n::even, 1-q, 1); (p*P(n))/(P(h)*P(h+1));
expand(simplify(expand(%))); seq(coeff(%, q, j), j=0..degree(%)) end:
seq(QExtCatalan(n, q), n=0..10);
MATHEMATICA
(* Function QBinom1 is defined in A274885. *)
QExtCatalan[n_] := QBinom1[n] / QBinomial[n+1, 1, q]; Table[CoefficientList[ QExtCatalan[n] // FunctionExpand, q], {n, 0, 10}] // Flatten
PROG
(Sage) # uses[q_binom1 from A274885]
from sage.combinat.q_analogues import q_int
def q_ext_catalan_number(n): return q_binom1(n)//q_int(n+1)
for n in (0..10): print([n], q_ext_catalan_number(n).list())
(Sage) # uses[unit_orbitals from A274709]
# Brute force counting
def catalan_major_index(n):
S = [0]*(((n+1)//2)^2 + ((n+1) % 2) - (n//2))
for u in unit_orbitals(n):
if any(x > 0 for x in accumulate(u)): continue # never rise above 0
L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)]
# i+1 because u is 0-based whereas convention assumes 1-base.
S[sum(L)] += 1
return S
for n in (0..10): print(catalan_major_index(n))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jul 20 2016
STATUS
approved