login
A274835
Number A(n,k) of set partitions of [n] such that the difference between each element and its block index is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 3, 52, 1, 1, 1, 1, 1, 2, 7, 203, 1, 1, 1, 1, 1, 1, 3, 14, 877, 1, 1, 1, 1, 1, 1, 2, 4, 39, 4140, 1, 1, 1, 1, 1, 1, 1, 3, 9, 95, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 4, 18, 304, 115975, 1
OFFSET
0,9
LINKS
EXAMPLE
A(3,0) = 1: 1|2|3.
A(3,1) = 5: 123, 12|3, 13|2, 1|23, 1|2|3.
A(5,2) = 7: 135|24, 13|24|5, 15|24|3, 1|24|35, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
A(7,3) = 9: 147|25|36, 14|25|36|7, 17|25|36|4, 1|25|36|47, 17|2|36|4|5, 1|2|36|47|5, 17|2|3|4|5|6, 1|2|3|47|5|6, 1|2|3|4|5|6|7.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 15, 3, 2, 1, 1, 1, 1, 1, 1, 1, ...
1, 52, 7, 3, 2, 1, 1, 1, 1, 1, 1, ...
1, 203, 14, 4, 3, 2, 1, 1, 1, 1, 1, ...
1, 877, 39, 9, 4, 3, 2, 1, 1, 1, 1, ...
1, 4140, 95, 18, 5, 4, 3, 2, 1, 1, 1, ...
1, 21147, 304, 33, 11, 5, 4, 3, 2, 1, 1, ...
1, 115975, 865, 89, 22, 6, 5, 4, 3, 2, 1, ...
MAPLE
b:= proc(n, k, m, t) option remember; `if`(n=0, 1,
add(`if`(irem(j-t, k)=0, b(n-1, k, max(m, j),
irem(t+1, k)), 0), j=1..m+1))
end:
A:= (n, k)-> `if`(k=0, 1, b(n, k, 0, 1)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, k_, m_, t_] := b[n, k, m, t] = If[n==0, 1, Sum[If[Mod[j-t, k]==0, b[n-1, k, Max[m, j], Mod[t+1, k]], 0], {j, 1, m+1}]]; A[n_, k_]:= If[k==0, 1, b[n, k, 0, 1]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A000012.
A(n,ceiling(n/2)) gives A008619.
A(3n,n) gives A094002.
Sequence in context: A333418 A212363 A212382 * A275069 A181937 A233836
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 08 2016
STATUS
approved