login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274669
Diagonal of the rational function 1/(1 - x - y - z + x y - x z - y z).
1
1, 8, 138, 2960, 70090, 1756608, 45678864, 1219013664, 33162009210, 915589703600, 25578044554348, 721420319128704, 20509529725235824, 586986330979489280, 16895932626393943680, 488743896405192037440, 14198840150264907505050, 414069243091986225102480, 12115901803035178006468500
OFFSET
0,2
COMMENTS
Annihilating differential operator: x*(x-2)*(11*x+12)*(27*x^2+92*x-3)*Dx^2 + (891*x^4+2132*x^3-689*x^2-4488*x+72)*Dx + 264*x^3+592*x^2+768*x-576.
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: hypergeom([1/12, 5/12],[1],-1728*x^4*(27*x^2+92*x-3)*(x-2)^2/(1-32*x+88*x^2)^3)/(1-32*x+88*x^2)^(1/4).
0 = x*(x-2)*(11*x+12)*(27*x^2+92*x-3)*y'' + (891*x^4+2132*x^3-689*x^2-4488*x+72)*y' + (264*x^3+592*x^2+768*x-576)*y, where y is the g.f.
D-finite with recurrence 72*(n^2)*a(n) +6*(-363*n^2+341*n-74)*a(n-1) +(-1601*n^2+7316*n-7460)*a(n-2) +2*(371*n^2-1531*n+1550)*a(n-3) +33*(3*n-8)*(3*n-10)*a(n-4)=0. - R. J. Mathar, Jul 27 2022
a(n) ~ sqrt(35/68 + 32/(17*sqrt(13))) * ((46 + 13*sqrt(13))/3)^n / (Pi*n). - Vaclav Kotesovec, Mar 19 2023
MATHEMATICA
gf = Hypergeometric2F1[1/12, 5/12, 1, -1728*x^4*(27*x^2 + 92*x - 3)*(x - 2)^2/(1 - 32*x + 88*x^2)^3]/(1 - 32*x + 88*x^2)^(1/4);
CoefficientList[gf + O[x]^20, x] (* Jean-François Alcover, Dec 01 2017 *)
PROG
(PARI)
my(x='x, y='y, z='z);
R = 1/(1 - x - y - z + x*y - x*z - y*z);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 20; x = 'x + O('x^N);
Vec(hypergeom([1/12, 5/12], [1], -1728*x^4*(27*x^2+92*x-3)*(x-2)^2/(1-32*x+88*x^2)^3, N)/(1-32*x+88*x^2)^(1/4))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 05 2016
STATUS
approved