login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274305
Order of shuffle group generated by in- and out-horseshoe shuffles of a deck of 2n cards.
1
2, 12, 120, 32, 3628800, 95040, 87178291200, 80, 6402373705728000, 1216451004088320000, 1124000727777607680000, 310224200866619719680000, 403291461126605635584000000, 152444172305856930250752000000, 265252859812191058636308480000000, 192, 295232799039604140847618609643520000000
OFFSET
1,1
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..64
Steve Butler, Persi Diaconis and R. L. Graham, The mathematics of the flip and horseshoe shuffles, arXiv:1412.8533 [math.CO], 2014.
Steve Butler, Persi Diaconis and R. L. Graham, The mathematics of the flip and horseshoe shuffles, The American Mathematical Monthly 123.6 (2016): 542-556.
FORMULA
See Maple program.
MAPLE
f:=proc(n) local k, i, np;
if n=1 then 2
elif n=2 then 12
elif n=3 then 120
elif n=6 then 12!/7!
elif (n mod 2) = 1 then (2*n)!
else
np:=n; k:=1;
for i while (np mod 2) = 0 do
np:=np/2; k:=k+1; od;
if (n=2^(k-1)) then (k+1)*2^k else (2*n)!/2; fi;
fi;
end;
[seq(f(n), n=1..64)];
MATHEMATICA
a[n_] := Which[n == 1, 2, n == 2, 12, n == 3, 120, n == 6, 12!/7!, OddQ[n], (2 n)!, True, np = n; k = 1; While[EvenQ[np], np = np/2; k++]; If[n == 2^(k - 1), (k + 1)*2^k, (2n)!/2]];
Array[a, 17] (* Jean-François Alcover, Nov 30 2017, from Maple *)
CROSSREFS
Sequence in context: A009748 A212414 A305051 * A317013 A369075 A328857
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 20 2016
STATUS
approved