login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274136
a(n) = (n+1)*(2*n+2)!/(n+2).
1
1, 16, 540, 32256, 3024000, 410572800, 76281004800, 18598035456000, 5762136335155200, 2211729098342400000, 1030334000462807040000, 572721601599913328640000, 374484928188990947328000000, 284562454970932936468070400000
OFFSET
0,2
COMMENTS
Sequence is inspired by A273889, A274119 and A273983.
Since Product_{i=0..n}(i*k+a) - Product_{i=0..n}(-i*k-b) ≡ 0 mod (n*k+a+b), then define B(n,k,a,b) = (Product_{i=0..n}(i*k+a) - Product_{i=0..n}(-i*k-b))/(n*k+a+b), with n*k+a+b <> 0, n >= 0 and k,a,b are integers, such that B(1,n,2,1) = (Product_{i=0..1}(i*n+2) - Product_{i=0..1}(-i*n-1))/(n+3) = A000012(n) with n >= 0;
B(3,n,2,1) = (Product_{i=0..3}(i*n+2) - Product_{i=0..3}(-i*n-1))/(3*n+3) = A100040(n+2) with n >= 0;
B(2*n+1,0,2,1) = (Product_{i=0..2*n+1}(2) - Product_{i=0..2*n+1}(-1))/3 = A002450(n+1) with n >= 0;
B(2*n+1,2,2,1) = (Product_{i=0..2*n+1}(2*i+2) - Product_{i=0..2*n+1}(-2*i-1))/(4*n+5) = A273983(n+1) with n >= 0;
and a(n) is B(2*n+1,1,2,1). - Hong-Chang Wang, Jun 17 2016
FORMULA
a(n) = B(2*n+1,1,2,1) = (Product_{i=0..2*n+1}(i+2) - Product_{i=0..2*n+1}(-i-1))/(2*n+4), n >= 0.
a(n) = A062779(n)/(2*(n+1)). - Michel Marcus, Jun 11 2016
a(n) ~ sqrt(Pi)*exp(-2*n)*(48*n*(24*n + 13) + 1177)*4^(n-2)*n^(2*n+1/2)/9. - Ilya Gutkovskiy, Jul 07 2016
EXAMPLE
a(0) = (2*3 - 1*2)/4 = 1.
a(1) = (2*3*4*5 - 1*2*3*4)/6 = 16.
a(2) = (2*3*4*5*6*7 - 1*2*3*4*5*6)/8 = 540.
MATHEMATICA
a[n_] := (Product[i + 2, {i, 0, 2*n + 1}] - Product[-i - 1, {i, 0, 2*n + 1}])/(2*n + 4); Table[a[n], {n, 0, 10}] (* G. C. Greubel, Jun 19 2016 *)
Table[((n+1)(2n+2)!)/(n+2), {n, 0, 30}] (* Harvey P. Dale, Oct 24 2020 *)
PROG
(Python)
# subroutine
def B (n, k, a, b):
pa = pb = 1
for i in range(n+1):
pa *= (i*k+a)
pb *= (-i*k-b)
m = n*k+a+b
p = pa-pb
if m == 0:
return "NaN"
else:
return p/m
# main program
for j in range(101):
print(str(j)+" "+str(B(2*j+1, 1, 2, 1))) # Hong-Chang Wang, Jun 14 2016
(PARI) a(n) = ((2*n+1)!-(2*n)!)/(2*(n+1)) \\ Felix Fröhlich, Jun 11 2016
(PARI) a(n) = (prod(i=0, 2*n+1, i+2)-prod(i=0, 2*n+1, -i-1))/(2*n+4) \\ Felix Fröhlich, Jul 05 2016
KEYWORD
nonn
AUTHOR
Hong-Chang Wang, Jun 10 2016
STATUS
approved