login
A274115
Number of equivalence classes of Dyck paths of semilength n for the string duu.
10
1, 1, 1, 2, 4, 8, 17, 35, 75, 157, 337, 712, 1529, 3248, 6976, 14869, 31937, 68222, 146536, 313487, 673351, 1441999, 3097326, 6637879, 14257734, 30572032, 65666593, 140860379, 302557585, 649202036, 1394434685, 2992721902, 6428118868, 13798302512, 29637567305, 63626933527, 136665012979
OFFSET
0,4
COMMENTS
a(n+1) is also the number of Dyck meanders of length n, where catastrophes are allowed. A catastrophe is a direct jump from any altitude > 0 to 0, see the Banderier-Wallner article. - Cyril Banderier, May 30 2019
LINKS
Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
Jean-Luc Baril and Sergey Kirgizov, Bijections from Dyck and Motzkin meanders with catastrophes to pattern avoiding Dyck paths, arXiv:2104.01186 [math.CO], 2021.
K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
FORMULA
A(x) = 1 + x/(1 - x*(1+x)*A000108(x^2)). - Gheorghe Coserea, Jan 06 2017
a(n) = Sum_{k=0..n} (k+1)*Sum_{i=0..(n-k)/2} C(k+1,2*k+2*i-n+3)*C(k+2*i,i))/(k+i+1), n>1, a(0)=1,a(1)=1. - Vladimir Kruchinin, Feb 14 2019
D-finite with recurrence (-n+1)*a(n) +2*a(n-1) +7*(n-3)*a(n-2) +3*(n-5)*a(n-3) +(-11*n+53)*a(n-4) +4*(-3*n+16)*a(n-5) +4*(-n+6)*a(n-6)=0. - R. J. Mathar, Sep 27 2020
MATHEMATICA
A[x_] = 1 + x/(1 + ((1 + x)(Sqrt[1 - 4x^2] - 1))/(2x)) + O[x]^40;
CoefficientList[A[x], x] (* Jean-François Alcover, Jul 27 2018, after Gheorghe Coserea *)
PROG
(PARI)
seq(N) = {
my(x='x+O('x^N),
A000108 = 1+x*Ser(vector(N\2, n, binomial(2*n, n)/(n+1)), 'x));
Vec(1+x/(1 - x*(1+x)*subst(A000108, 'x, 'x^2)));
};
seq(37) \\ Gheorghe Coserea, Jan 06 2017
(Maxima)
a(n):=if n<2 then 1 else sum((k+1)*sum((binomial(k+1, 2*k+2*i-n+3)*binomial(k+2*i, i))/(k+i+1), i, 0, (n-k)/2), k, 0, n); /* Vladimir Kruchinin, Feb 14 2019 */
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Jun 17 2016
EXTENSIONS
a(0)=1 prepended and more terms from Gheorghe Coserea, Jan 06 2017
STATUS
approved