login
A273956
G.f. A(x) satisfies: A(x - x/(1-x)*A(x)) = x.
0
1, 1, 4, 21, 131, 921, 7083, 58493, 512342, 4718671, 45407919, 454384447, 4710818128, 50453504549, 556929098189, 6324139809301, 73759635547026, 882440215196461, 10817350790774790, 135741743078330321, 1742225569514045719, 22854838454769204603, 306233932315912508708, 4188667660550945874199, 58453992283916684321847, 831867972069915069340899
OFFSET
1,3
FORMULA
G.f. A(x) satisfies:
(1) A(x) = x + Sum_{n>=1} (d/dx)^(n-1) ( x/(1-x)*A(x) )^n / n!.
(2) A(x) = x * exp( Sum_{n>=1} (d/dx)^(n-1) (1/x) * ( x/(1-x)*A(x) )^n / n! ).
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 21*x^4 + 131*x^5 + 921*x^6 + 7083*x^7 + 58493*x^8 + 512342*x^9 + 4718671*x^10 + 45407919*x^11 + 454384447*x^12 +...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = serreverse(x - x/(1-x)*A +x*O(x^n)) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A058308 A078591 A090366 * A131965 A332851 A303563
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2016
STATUS
approved