OFFSET
1,1
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891, page 19.
R. J. Mathar, Some definite integrals over a power multiplied by four Modified Bessel Functions, vixra:1606.0141 (2016) eq. (35).
FORMULA
s(4,0) = Integral_{0..Pi/4) 4 EllipticK(-tan(x)^2) EllipticK(-cot(x)^2) / sin(2x) dx, where EllipticK is the complete elliptic integral of the first kind.
N.B. K(k) used in the paper is related to Mathematica's EllipticK(k) by K(k) = EllipticK(k^2/(k^2-1))/sqrt(1 - k^2).
EXAMPLE
6.997563016680632359556757826853096005697754284353362908336255807...
MATHEMATICA
s[4, 0] = NIntegrate[4 EllipticK[-Cot[t]^2] EllipticK[-Tan[t]^2] /Sin[2 t], {t, 0, Pi/4}, WorkingPrecision -> 103];
RealDigits[s[4, 0]][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jun 05 2016
STATUS
approved