login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273615
Numbers k such that k^4 is the average of two positive cubes while k is not.
1
329, 518, 566, 662, 732, 741, 777, 804, 806, 876, 921, 998, 1029, 1092, 1236, 1238, 1317, 1497, 1526, 1596, 1812, 1862, 1929, 1988, 2181, 2316, 2604, 2632, 2757, 4204, 4396, 4446, 4684, 5068, 5548, 5782, 5838, 5856, 5928, 5982, 6124, 6126, 6216
OFFSET
1,1
COMMENTS
If k is the average of two positive cubes, then k^4 is also the average of two positive cubes. So this sequence focuses on the solutions that are not trivial.
LINKS
EXAMPLE
329 is a term because 329 is not the average of two positive cubes while 329^4 = (1833^3 + 2585^3)/2.
MAPLE
Q:= proc(x) local t;
for t in select(t -> t^3<=x and 4*t^3 > x and x/t - t^2 mod 3 = 0,
numtheory:-divisors(x)) do
if issqr((x/t - t^2)/3) then return true fi
od:
false
end proc:
select(x -> not(Q(x)) and Q(x^4), [$1..10000]); # Robert Israel, May 26 2016
MATHEMATICA
Q[x_] := Module[{s, t}, s = Select[Divisors[x], #^3 <= x && 4*#^3 > x && Mod[x/# - #^2, 3] == 0 &]; For[t = 1, t <= Length[s], t++, If[IntegerQ@Sqrt[(x/s[[t]] - s[[t]]^2)/3], Return[True]]]; False];
Reap[For[x = 1, x <= 10000, x++, If[!Q[x] && Q[x^4], Print[x]; Sow[x]]]][[2, 1]] (* Jean-François Alcover, May 18 2023, after Robert Israel *)
PROG
(PARI) isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
lista(nn) = for(n=1, nn, if(isA003325(2*n^4) && !isA003325(2*n), print1(n, ", ")));
(PARI) T=thueinit('z^3+1);
isA003325(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0
is(n)=isA003325(2*n^4) && !isA003325(2*n) \\ Charles R Greathouse IV, May 27 2016
CROSSREFS
Sequence in context: A278352 A246858 A253054 * A231362 A202010 A265195
KEYWORD
nonn
AUTHOR
Altug Alkan, May 26 2016
STATUS
approved