login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = f(10, f(9, n)), where f(k,m) = floor(m*k/(k-1)).
1

%I #28 Nov 07 2022 20:26:35

%S 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30,

%T 31,32,33,34,35,36,37,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,57,

%U 60,61,62,63,64,65,66,67,70,71,72,73,74,75,76,77,80,81,82,83,84,85,86,87,90

%N a(n) = f(10, f(9, n)), where f(k,m) = floor(m*k/(k-1)).

%C Also, numbers not ending with the digit 8 or 9.

%C The initial terms coincide with those of A007094 and A039155. First disagreement is after 77 (index 63): a(64) = 80, A007094(64) = 100 and A039155(65) = 89.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).

%H <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.

%F G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + 3*x^7)/((1 + x)*(1 - x)^2*(1 + x^2) *(1 + x^4)).

%F a(n) = a(n-1) + a(n-8) - a(n-9).

%F a(n) = 1.25n + O(1). - _Charles R Greathouse IV_, Nov 07 2022

%p f := (k, m) -> floor(m*k/(k-1)):

%p a := n -> f(10, f(9,n)):

%p seq(a(n), n = 0..72); # _Peter Luschny_, May 03 2016

%t f[k_, m_] := Floor[m*k/(k-1)];

%t a[n_] := f[10, f[9, n]];

%t Table[a[n], {n, 0, 72}] (* _Jean-François Alcover_, May 09 2016 *)

%t LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,7,10},90] (* _Harvey P. Dale_, Jun 22 2017 *)

%o (Magma) k:=10; f:=func<k,m | Floor(m*k/(k-1))>; [f(k,f(k-1,n)): n in [0..70]];

%o (Sage)

%o f = lambda k, m: floor(m*k/(k-1))

%o a = lambda n: f(10, f(9, n))

%o [a(n) for n in range(73)] # _Peter Luschny_, May 03 2016

%o (PARI) is(n)=n%10<8 \\ _Charles R Greathouse IV_, Feb 13 2017

%Y Cf. similar sequences listed in A272574.

%K nonn,easy,base

%O 0,3

%A _Bruno Berselli_, May 03 2016