login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272491
Decimal expansion of the edge length of a regular 19-gon with unit circumradius.
8
3, 2, 9, 1, 8, 9, 1, 8, 0, 5, 6, 1, 4, 6, 7, 7, 8, 8, 2, 8, 7, 3, 0, 4, 1, 1, 8, 1, 7, 5, 8, 7, 6, 8, 3, 9, 0, 2, 4, 3, 4, 4, 9, 6, 6, 7, 1, 9, 3, 0, 8, 2, 4, 6, 7, 0, 2, 9, 4, 2, 5, 4, 8, 0, 9, 8, 1, 5, 3, 8, 0, 5, 7, 0, 4, 9, 4, 3, 4, 1, 2, 5, 9, 5, 5, 7, 4, 6, 2, 8, 7, 6, 0, 1, 8, 7, 9, 8, 6, 0, 7, 7, 2, 8, 5
OFFSET
0,1
COMMENTS
The edge length e(m) of a regular m-gon is e(m) = 2*sin(Pi/m). In this case, m = 19, and the constant, a = e(19), is not constructible using a compass and a straightedge (see A004169). With an odd m, in fact, e(m) would be constructible only if m were a Fermat prime (A019434).
FORMULA
Equals 2*sin(Pi/19) = 2*cos(Pi*17/38).
EXAMPLE
0.32918918056146778828730411817587683902434496671930824670294254...
MATHEMATICA
RealDigits[N[2Sin[Pi/19], 100]][[1]] (* Robert Price, May 01 2016 *)
PROG
(PARI) 2*sin(Pi/19)
CROSSREFS
Edge lengths of nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A130880 (n=18).
Sequence in context: A228492 A340875 A329038 * A010271 A291777 A143074
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, May 01 2016
STATUS
approved