login
A271749
Number of set partitions of [n] such that 10 is the largest element of the last block.
2
42294, 168509, 724731, 3321545, 16075611, 81602489, 432156891, 2377526345, 13540170651, 79588371929, 481614364251, 2993757491945, 19079196017691, 124446430190969, 829494189346011, 5642172217982345, 39113680447384731, 276028057609763609, 1980851149371918171
OFFSET
10,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (45,-870,9450,-63273,269325,-723680,1172700,-1026576,362880).
FORMULA
G.f.: x^10 *(362880*x^9 -4242318048*x^8 +10665532740*x^7 -10436766264*x^6 +5329525399*x^5 -1580780268*x^4 +282366820*x^3 -29937606*x^2 +1734721*x -42294) / Product_{j=1..9} (j*x-1).
a(n) = 45*a(n-1) - 870*a(n-2) + 9450*a(n-3) - 63273*a(n-4) + 269325*a(n-5) - 723680*a(n-6) + 1172700*a(n-7) - 1026576*a(n-8) + 362880*a(n-9) for n>19. - Colin Barker, Jan 05 2018
PROG
(PARI) Vec(x^10*(42294 - 1734721*x + 29937606*x^2 - 282366820*x^3 + 1580780268*x^4 - 5329525399*x^5 + 10436766264*x^6 - 10665532740*x^7 + 4242318048*x^8 - 362880*x^9) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)*(1 - 9*x)) + O(x^40)) \\ Colin Barker, Jan 05 2018
CROSSREFS
Column k=10 of A271466.
Sequence in context: A186604 A345154 A103155 * A031670 A237312 A217164
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved